Laboratory Guidelines
3. Laboratory Guidelines

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Neoss Implant System</td>
<td>3:3</td>
</tr>
<tr>
<td>3.2 Esthetiline Solution</td>
<td>3:3</td>
</tr>
<tr>
<td>3.3 Provisional Abutments</td>
<td>3:8</td>
</tr>
<tr>
<td>3.3.1 Esthetic Tissue Formers</td>
<td>3:8</td>
</tr>
<tr>
<td>3.3.2 Provisional Titanium Abutments</td>
<td>3:9</td>
</tr>
<tr>
<td>3.4 Impression Techniques</td>
<td>3:11</td>
</tr>
<tr>
<td>3.4.1 Digital impressions</td>
<td>3:11</td>
</tr>
<tr>
<td>3.4.2 Conventional impressions</td>
<td>3:11</td>
</tr>
<tr>
<td>3.5 NeoLink® – the Concept</td>
<td>3:16</td>
</tr>
<tr>
<td>3.5.1 Single Unit Construction</td>
<td>3:17</td>
</tr>
<tr>
<td>3.5.2 Multiple Unit Construction</td>
<td>3:19</td>
</tr>
<tr>
<td>3.5.3 Double Scan – Milled Constructions</td>
<td>3:21</td>
</tr>
<tr>
<td>3.5.4 Direct Investing – Casting</td>
<td>3:22</td>
</tr>
<tr>
<td>3.5.5 Indirect Investing – Framework Bonding</td>
<td>3:23</td>
</tr>
<tr>
<td>3.6 Titanium Prepable Abutments</td>
<td>3:24</td>
</tr>
<tr>
<td>3.6.1 Titanium Prepable Abutment – Alternative Emergence Profiles</td>
<td>3:26</td>
</tr>
<tr>
<td>3.7 Zirconia Abutment</td>
<td>3:27</td>
</tr>
<tr>
<td>3.8 Express Abutment</td>
<td>3:30</td>
</tr>
<tr>
<td>3.9 Access Abutment</td>
<td>3:34</td>
</tr>
<tr>
<td>3.10 Overdenture Solutions</td>
<td>3:36</td>
</tr>
<tr>
<td>3.10.1 Ball Abutments</td>
<td>3:36</td>
</tr>
<tr>
<td>3.10.2 Equator Abutments</td>
<td>3:39</td>
</tr>
<tr>
<td>3.10.3 Bar Abutments</td>
<td>3:43</td>
</tr>
<tr>
<td>3.11 Technical Data</td>
<td>3:47</td>
</tr>
</tbody>
</table>
3.1 Neoss Implant System

The Neoss® Implant System is a logical and simplified approach suitable for all dental implant treatment protocols: Immediate or Early Loading, Immediate Placement and One or Two Stage placement. The Neoss Implant System is available in 6 diameters ∅3.5, ∅4.0, ∅4.5, ∅5.0, ∅5.5 and ∅6.0 and in addition there is a narrow Neoss ∅3.25 mm implant. The implants are available in lengths from 7 – 17 mm with some deviations, please refer to product catalog for detailed information about available implant types, diameters and lengths.

The Neoss implants are a universal design for all bone qualities. The implants have both Thread Cutting and Thread Forming as the geometry of the implants ‘forms’ the site in poorer bone qualities optimizing compression. They are self tapping implants with the primary cutting face designed to cut a precise thread profile and a secondary cutting face to control compression in dense bone. The ProActive Straight and ProActive Tapered implants are commercially pure titanium implants with an altered surface. This surface has been subjected to a multistage blasting, etching, cleaning and superhydrophilicity treatment.

The Neoss implants have an internal connection. The implant is ‘picked up’ from a sterile glass vial with an Implant Inserter. The surgical drills are for single use and delivered in sterile condition for immediate use. There is only one screwdriver connection in the standard assortment and this is used for all components including cover screws, healing abutment screws, and final abutment screws.

All Neoss implants, except ∅3.25, have the same implant to abutment connection as there is a single platform for all standard implant diameters. The abutment connection has zero rotation preventing abutment loosening and external wall deformation.

Neoss implants are provided in kits which include a cover screw, two healing abutments (one with ∅3.25 mm implant) and a healing abutment screw. This complete delivery method enables the clinician to undertake either one or two stage surgery at time of placement without the need to have pre-ordered individual components.

The following information is a guide as requirements may vary on an individual basis.

3.2 Esthetiline Solution

The Esthetiline solution enables simple, rapid and effective anatomical tissue contouring to be developed and optimized with matching standard and individualized restorative components. The Neoss Esthetiline solution provides seamless restorative integration all the way from implant placement to final crown restoration. The natural emergence profile developed during healing is matched perfectly in permanent restorative components; Prepable Titanium abutments, Zirconia abutments, custom abutments and copings, and CAD/CAM solutions as shown on next page.

The gingival margin abutment profile is fixed in relation to the non-rotational feature on all Esthetiline abutments and thus related to the position of the implant – indexing. The Esthetiline solution is best applied when the implant is oriented at surgery by ensuring that there is a groove in the buccal direction. This will require the least adjustment. Indexing throughout the treatment is possible utilizing the indexing features as shown in the Esthetiline Overview on next page.
Neoss Implant System Laboratory Guidelines

Product Assortment
Prepable Abutments
Zirconia Abutments
NeoLink® Plastic Copings Set

Esthetic Healing Abutments
Esthetic Tissue Formers
Narrow Insicor
Wide Insicor Canine Pre-molar Molar

Soft Tissue Healing
Temporary Solutions
Impression Solutions
Esthetic Restoration

Treatment Options
Screw Retained
Cement Retained/Chairside

Indexing

Esthetiline overview - stock abutments and conventional impression taking

Optimal
Not Optimal

Cement Retained/Chairside Indexing
Esthetiline overview - stock abutments and conventional impression taking
Esthetilene Shapes

31300 NeoLink® Plastic Copings Set

Stock abutments

Prepable Abutments

Zirconia Abutments

Esthetic Tissue Formers

CAD/CAM abutments

Digital library shapes

Esthetic Healing Abutments

Note: Plastic copings can be used with a NeoLink® as try-in abutments to facilitate abutment selection. Plastic copings are for single use.
Esthetic Healing Abutments and Tissue Formers – Healing & Provisional Abutments

Placement of Esthetic Healing Abutments and Tissue Formers at implant placement or abutment connection guides the soft tissue and enables simple creation of the optimal emergence profile. Esthetic Healing Abutments and Tissue Formers are non-rotational and made in a range of anatomical shapes which are designed to match the profiles of individual incisor, canine, pre-molar and molar teeth.

Note: The trans-gingival section on Esthetic Healing Abutments and Tissue Formers is slightly smaller buccally than matching restorative components in order to provide additional soft tissue volume.

Note: The molar type can be rotated 90° if preferred but the implant has to be oriented accordingly at the time of surgery.

Esthetic Healing Abutments

The Esthetic Healing Abutment functions as a regular healing abutment with the purpose to create a soft tissue profile during healing. Together with the ScanPeg inserted in the Esthetic Healing Abutment, a digital impression can be recorded with an intra-oral scanner. For more information about the use of Esthetic Healing Abutments please refer to section "1.4 Clinical Treatment" and the separate instructions for use (11926).

Esthetic Tissue Formers

The Esthetic Tissue Formers are used for cement or screw retained provisional restorations. The titanium/polymer structure makes it highly biocompatible whilst retaining ease of preparation, strength and ability to bond to resins. For more information about the use of Esthetic Tissue Formers please refer to section "3.3 Provisional Abutments".

Digital Impression Techniques

The ScanPeg that comes with the Esthetic Healing Abutment is a scan body momentarily fitted in the screw access hole of the Esthetic Healing Abutment to enable digital acquisition of the implant position in relation to the adjacent teeth and soft tissue.

The Esthetic Healing Abutment in combination with the ScanPeg is included in Neoss 3D libraries for design of matching CAD/CAM abutments in design software from 3shape, Exocad and Dental Wings. For more information please refer to separate instructions for use (11926).

Conventional Impression Techniques

There are a series of treatment options; an impression may be taken to enable laboratory fabrication of a custom abutment or gold or metal framework in a traditional manner. Prepable Titanium or Zirconia abutments may also be prepared in the laboratory environment. An alternative option is to place a suitable Titanium Prepable or Zirconia Abutment directly at the chair-side and take a conventional crown impression.

Note: It may prove necessary to prepare the margins of the Titanium Prepable or Zirconia Abutments, for more information please refer to sections "3.6 Titanium Prepable Abutments" and "3.7 Zirconia Abutment".

The standard Neoss impression coping is suitable for implant level impressions. There will typically be a gap between the impression
coping and the sculpted anatomical gingiva which has been created by the Tissue Former. In the majority of cases the degree of tissue collapse will be minimal during the impression procedure and a normal impression technique syringing material between the coping and gingival will give an accurate result. If there is concern about tissue collapse a second Tissue Former of the same type may be used together with an impression coping screw for the impression. For more information about impression taking procedure please refer to section "3.4 Impression Techniques".

Final restoration – CAD/CAM abutments
The Esthetic Healing Abutment in combination with the ScanPeg is included in Neoss 3D libraries for design of matching CAD/CAM abutments in design software from 3shape, Exocad and Dental Wings. The CAD/CAM abutments can be provided with straight or angulated screw channels in and in various materials. For more information please refer to separate guidelines and instructions for use (11321, 11926).

Final restoration – stock abutments

Prepable Titanium Abutment
The shape of Prepable Titanium abutments match the profile of the Tissue Formers making it possible to accurately define soft tissue contours without the need for complex impression procedures. The abutments may be modified by marginal adaptation and angulation. For more information about Prepable Titanium Abutments please refer to section "3.6 Titanium Prepable Abutments".

Zirconia Abutment
Zirconia abutments are supplied in two parts; the Zirconia coping, with a profile matching the provisional Tissue Formers thus giving an optimal aesthetic solution, and a pre-blasted Titanium NeoLink® Mono. The Zirconia coping is designed to be cemented onto the NeoLink®. This may be carried out at the chair-side or in laboratory using resin bonded cement. Careful adjustment of the ceramic coping may be made prior to cementation and placement. For more information about use of the Zirconia abutment please refer to section "3.7 Zirconia Abutment".

NeoLink® Mono and NeoLink® Plastic Copings
Individual crowns may be constructed utilizing the NeoLink® concept. The set of preformed plastic anatomical copings provide a complete range of abutment designs for different teeth, emergence profiles, heights and angulations. For best result choose the same type of coping matching the used Tissue Former. The different copings represent and correspond to the matching Tissue Formers as shown previously; copings #1–4 Wide Incisor, #5–8 Narrow Incisor, #9–10 Canine, #11 Pre-molar and #12 Molar.

Note: Plastic copings can be used with a NeoLink® as try-in abutments to facilitate abutment selection. Plastic copings are for single use.
There is an index between the NeoLink® and the coping in order to achieve a specific orientation in relation to the implant’s rotational position.
For more information about custom abutments and copings and CAD/CAM solutions please refer to section "3.5 NeoLink® – the Concept".
3.3 Provisional Abutments

3.3.1 Esthetic Tissue Formers

The Esthetic Tissue Former may be used for cement or screw retained single tooth provisional restorations. The abutments may be placed directly into the patient’s mouth and prepared intra-orally or adjusted by the technician on a laboratory model. If the Esthetiline Solution is utilized, then the optimal result is achieved by choosing the same type of permanent restoration and same position as during healing. The appropriate Esthetic Tissue Former is selected in relation to tooth position for the proposed implant. For improved tissue support, the abutment should be placed so that the margin is supra- or equigingival.

The “chimney” portion of the abutment and the margin height may be adjusted by use of a rotary instrument. In addition, the tissue facing axial contours of the abutment may be modified to achieve the desired shape. If axial modification is done, polishing with silicone points or similar methods is recommended.

Note: The provisional restoration should be placed out of occlusion.

Note: The Esthetic Tissue Former may be adjusted to a minimum diameter of 5.0 mm and to a minimum height of 4.0 mm from the implant platform. The “chimney” portion may be shortened but not narrowed.

Note: For provisional bridge restorations Provisional Titanium Abutment Multi is recommended.

Screw retained

1. Cut mechanical retention grooves or slots into the Esthetic Tissue Former.

2. Construct a provisional crown in conventional manner. Ensure the screw access channel remains clear. Unscrew and remove the provisional abutment and contour margins/polish etc. as required.

3. Insert the completed provisional crown and tighten to 20 Ncm.
Cement retained

1. Insert the Esthetic Tissue Former and tighten to 20 Ncm.
 Note: no additional retention is required

2. Construct a provisional crown in conventional manner. Ensure the
 resin does not bond to the Esthetic Tissue Former by for example
 using a separating medium.

3. It is important to remove and replace the provisional crown at
 least once prior to final setting of the restorative material to avoid
 difficulty in removing the crown once the restorative material has
 set.

4. Contour margins/polish etc. as required.

5. Cement provisional crown onto Esthetic Tissue Former with
 preferred temporary cement. Care should be taken to ensure that
 all excess cement is completely removed.

 The provisionals are left in place for desired period, maximum
 30 days.

3.3.2 Provisional Titanium Abutments

The Provisional Titanium Abutments are designed with a 0.7 mm collar
and are available both for single unit (Mono) and multiple unit (Multi)
situations. The Mono is available both with and without retention
rings (screw retained and cement retained). All Provisional Titanium
Abutments come with a plastic coping. The abutments may be
prepared intra-orally, extra-orally or adjusted by the technician on
a laboratory model. Care should be taken when preparing titanium
 intra-orally.

The component may also be used for as a waxing sleeve when constructing a crown/framework that
will be scanned to produce CAD/CAM prosthesis or copy milled prosthesis.

Notes: When using the Titanium Provisional Abutment as a waxing sleeve it is recommended to use a
self curing resin direct to the abutment.

Use the dedicated article Provisional Ti Abutment Mono Cement-retained for cemented cases.
Both ends of the plastic coping fit the abutment. One end is straight and the other has a small
margin to adapt to the clinical situation. There is an indexing between the plastic coping and the
Provisional Abutment (the plane on the Provisional Abutment matches a plane in the plastic coping)
in order to achieve a specific orientation in relation to the implant’s rotational position.

For protection and extension of the screw access hole use Laboratory Screw – Long.
The provisional restoration should be placed out of occlusion.

If the plastic coping is utilized, the provisionals can be left in place for desired period maximum
30 days.

Screw retained

Screw retained provisional crowns/bridges may be produced directly in the patient’s mouth (chair-
side) or in the in the dental laboratory.

Chair-side construction

A provisional crown or bridge may be produced at the chair-side using standard techniques.
In the majority of cases when constructing a screw retained provisional crown/bridge the restorative
material is applied direct to the Provisional Abutment, but the plastic coping can be used and bonded
as for cement retained solution.
1. For single unit construction use the Provisional Titanium Abutment Mono. For multiple unit screw retained direct to implant construction – use Provisional Titanium Abutment Multi.

2. Screw retain the Provisional Titanium Abutment directly to the implant with the appropriate screw – at this time hand tightening is sufficient and cut and adjust by selective grinding as required.

 Note: Adjustments to the abutment are made with high-speed grinding using either a tungsten or diamond bur with irrigation and high volume aspiration.

 Tip: It is sometimes easier to mark the abutment where it needs adjusting whilst in the mouth, then remove and adjust.

3. Construct a provisional crown/bridge in the conventional manner. The restorative material is applied direct to the abutment.

4. Unscrew and remove the provisional crown/bridge and contour margins/polish etc. as required.

5. Insert the completed provisional crown/bridge and tighten to 20 Ncm.

Laboratory construction

Clinical step 1
1. An implant level impression is taken and sent to the laboratory.

Laboratory procedure

In the majority of cases when constructing a screw retained provisional crown/bridge the restorative material is applied direct to the Provisional Abutment.

 A. For single unit construction use the Provisional Titanium Abutment Mono. For multiple unit screw retained direct to implant construction – use Provisional Titanium Abutment Multi.

 B. Screw retain the Provisional Titanium Abutment/s onto the laboratory model with the applicable screw. Cut and adjust by selective grinding as required.

 Note: Adjustments to the abutment are made with high-speed grinding using either a tungsten or diamond bur with irrigation and high volume aspiration.

 C. Construct a provisional crown/bridge in the conventional manner. The restorative material is applied direct to the abutment. The surface of the abutment may be roughened or sandblasted to aid in retention of the restorative material.

 D. Unscrew and remove the provisional crown/bridge and contour margins/polish etc. as required.

 E. Return to dentist for insertion.

Clinical step 2

1. The provisional crown/bridge is delivered to the patient and hand-tightened to the implant. Final checking of occlusion/contours/color is carried out. Once verified the screw is tightened to 20 Ncm.

2. Block out the screw access channel with gutta-percha. Use a suitable material such as light curing composite to fill in the screw access channel.
Cement retained

Chair-side construction

1. For single unit construction use the Provisional Titanium Abutment Mono – Cement retained. For bridge constructions, the engaging section is removed by grinding.
 Note: The Provisional Abutment is designed with an anti-rotational flat side. Additional retention should not be required as it could impair the ability to remove the cemented part.

Chair-side/Laboratory construction

2. Construct a provisional crown/bridge in conventional manner utilizing the plastic coping. It is important to remove and replace the provisional crown/bridge at least once prior to final setting of the restorative material to avoid difficulty in removing the crown/bridge once the restorative material has set.

3. Contour margins/polish etc. as required.

4. Ensure that the abutment screw has been tightened to a maximum of 20 Ncm before cementing the temporary crown or bridge with preferred cement (for example, Kerr TempBond® or Kerr TempBond® NE). Care should be taken to ensure that all excess cement is completely removed.

3.4 Impression Techniques

Neoss offers a range of solutions for accurate and fast impression taking on both implant and abutment level using intra-oral scanning or conventional impression techniques.

3.4.1 Digital impressions

Neoss Scan Bodies are available for all Neoss implants and Neoss Access abutments. They are compatible with most available scanners and planning and design software including 3shape, Exocad and Dental Wings. For more information please refer to separate instructions for use (11609). In addition, Neoss offers the ScanPeg which is a scan body momentarily fitted in the screw access hole of the Neoss Esthetic Healing Abutment. The combination of these two components is used to take a digital impression without removing the healing abutment from the implant. For more information please refer to separate instructions for use (11926).

3.4.2 Conventional impressions

Implant level impressions may be used to accurately record implant positions easily using open or closed tray techniques for the Neoss System. Exceptions are the Express and Access Abutment which have their own specific copings. Impressions of Titanium Prepable Abutments can be taken using conventional crown and bridge method.

The purpose of an implant level impression is to accurately transfer to a laboratory model the position of the implant in relation to natural teeth or other implants as well as the soft tissue contours. An Implant Level impression may be made at different stages during treatment and is dependant on operator preferences –

• At time of initial surgery – for one stage techniques, or to enable the delivery of a provisional crown at second stage surgery
• At second stage surgery
• Following soft tissue healing after a second stage surgical procedure

The Neoss System offers one universal Implant Level Impression Coping for both ‘Open’ and ‘Closed’ Tray impression techniques as detailed below and one Impression Coping for ‘Open Tray’ impression only.
The universal impression coping is available in three different lengths – 8 mm, 11 mm and 18 mm.

The universal Impression Coping utilizes separate items depending on impression technique and is packaged with the implant replica.

Impression coping – which engages the implant has both horizontal and vertical grooves for definite retention in the impression material.

Screw – which secures the impression coping to the implant during impression taking (use screwdriver in conjunction with manual handle).

Plastic extension tube – which may be trimmed to length and enables easy access to the head of the screw when using the ‘Open Tray’ technique.

Note: The impression copings are not interchangeable for reasons of accuracy. Hence use the same impression coping in the same impression cavity.

Red Plastic Cap – which is used for closed tray impressions only.

Neoss Implant Level Impression Techniques

Open Tray
In an open tray technique the impression coping is ‘picked up’ in the impression material. Only three of the four components of the universal Impression Coping Assembly are used, the Red and White Plastic Caps are NOT used.

Clinical Procedure – Open Tray
1. Use the universal Impression Coping as supplied.
 Note: The Neoss Impression coping is ‘self-seating’. This means that the screw will not engage the implant if the coping is not correctly seated. However a radiograph is recommended if there is any uncertainty or risk of soft tissue entrapment.

2. Expose the head of the implant – e.g. remove the cover screw or healing/provisional abutment and ensure that the top of the implant is clear of any soft or hard tissue.
3. Place desired length impression coping (8, 11 or 18 mm) (11 mm for Ø3.25 mm implant) Implant Level impression coping onto the implant and tighten the screw – hand tightening is sufficient, use the screwdriver and manual handle.

4. Try-in the modified impression tray (a window has been previously cut in the area of the implant) and ensure that the tray is clear of the impression coping and the plastic tube extends beyond the impression tray. The plastic tube may be reduced or removed prior to taking the impression. Place some wax over the window.

5. Using a medium to heavy body impression material, inject around the impression coping and fill the impression tray.

6. Seat the impression tray into the patient and ensure the plastic tube/s is clearly visible.

7. After the impression material has set, grasp the plastic sleeve with tweezers and remove.

8. Using the screwdriver ensure that the screw has been completely undone/disengaged from the coping and remove the impression.
 Note: Upon removal of the impression the implants are covered by replacing the cover screw or healing/provisional abutment.

9. Using the screwdriver attach the implant replica to the impression coping. Whilst supporting the screw with the screwdriver, ensure correct seating and hand tighten – DO NOT OVER TIGHTEN (10 Ncm maximum).
 Note: The Impression Coping Open Tray utilizes same procedure as above.
Laboratory Procedure – Open Tray
A. Ensure that the implant replica is correctly seated on to the impression coping.
B. Pour model in the usual manner and allow to set.
C. Undo the screw and remove impression from the model.
D. Proceed to construct the prosthesis.

Tip: Soft tissue material may be applied around the impression coping before the model is poured. Another option is to construct the soft tissue model on the master model by injecting soft tissue material into a preprepared ‘putty’ key which has been reseated onto the prepared model.

Neoss Implant Level Impression Techniques

Closed Tray
In a closed tray technique the impression coping remains in the patient’s mouth when the impression is removed. Once the impression coping has been removed and the replica attached it is then re-seated into the impression. The Red Plastic Cap is utilized over the impression coping once it has been correctly seated into the patient’s mouth. The plastic extension tube is NOT used.

Note: This technique may be contraindicated in cases where implant angulation is severe.

Clinical Procedure – Closed Tray
1. Use the impression coping as supplied – however remove the plastic extension tube.

 Note: The Neoss impression coping is ‘self-seating’. This means that the screw will not engage the implant if the coping is not correctly seated. However a radiograph is recommended if there is any uncertainty or risk of soft tissue entrapment.

2. Expose the implant – e.g. remove the cover screw or healing/provisional abutment and ensure that the top of the implant is clear of any soft or hard tissue.

3. Place the desired length impression coping (8, 11 or 18 mm) (11 mm for Ø3.25 mm implant) Implant Level impression coping onto the implant and tighten the screw with the screwdriver and manual handle.

 Position the Red Plastic Cap on the impression coping and firmly push until seated.

 Note: The upper part of the Impression Coping has a direction indicator located between the two flat surfaces that aligns with one of the engaging lugs for optimal orientation. The direction indicator is ideally positioned facially for proper seating of the red Impression Coping Cap.

 Note: Align the flat side of the red Impression Coping Cap with the direction indicator on the Impression Coping to allow for proper orientation of the Impression Coping Cap during seating.

4. Using a medium to heavy body impression material, inject around the impression coping and fill the impression tray.

5. Seat the impression tray into the patient.
6. When the impression material has set, remove the impression (the Red Plastic Impression Cap is ‘picked up’ in the impression).

7. Using the screwdriver unscrew and remove the Implant Level impression coping from the patient.

8. The implant replica (supplied with the impression coping) is now screwed into the impression coping.

9. Reposition the impression coping with replica attached back into the corresponding location in the Red Plastic Cap in the impression (use the two flat sides of the impression coping for alignment into the Red Plastic Cap). The impression coping needs to be properly oriented in the Red Plastic Cap, meaning that the coping will slide without resistance almost completely down into the cap before a final push seats the coping.

Laboratory Procedure – Closed Tray

A. Ensure that the implant replica is correctly seated on to the impression coping which has been repositioned accurately into the impression.

B. Pour model in the usual manner and allow to set.

C. Remove impression from the model, undo screw and remove impression coping.

D. Proceed to construct the prosthesis.

 Tip: Soft tissue material may be applied around the impression coping before the model is poured. Another option is to construct the soft tissue model on the master model by injecting soft tissue material into a preprepared ‘putty’ key which has been reseated onto the prepared model.
3.5 NeoLink® – the Concept

Introduction

The Neoss Implant System abutments have been designed to facilitate the fabrication of custom designed screw retained gold, titanium and ceramic abutments or frameworks having a precision machined fit which are utilized in the production of cement or screw retained implant prosthesis.

Neooss abutments offer high accuracy prosthetic solution. Abutments and frameworks may be produced in zirconia or other options such as gold, titanium or cobalt chrome, or they may be CAD/CAM produced while maintaining the accuracy and tolerances obtained from machined components. This is possible due to the NeoLink®, which is a precision machined component made of gold, c.p. titanium or cobalt chrome, providing the interface between implant and abutment framework.

The set of preformed plastic anatomical copings, part of the Esthetiline Solution, provide a complete range of abutment designs for different teeth, emergence profiles, heights and angulations.

Once the accuracy of the Neoss replica has been checked on the master model, the choice is made to create a crown (NeoLink® Mono) or bridge (NeoLink® Multi) in gold, titanium or cobalt chrome. A custom abutment or framework is produced by combining the most appropriate design of plastic anatomical coping with the desired NeoLink®.

There are a number of options:

1. CAD/CAM abutments/frameworks cemented or bonded to the NeoLink/s® titanium.
 Note: Bonding of CAD/CAM designed copings or frameworks may be done ‘prior to’ or ‘after’ application of the porcelain/restorative material. This depends on the materials and techniques utilized.

2. Invest and cast directly onto the gold NeoLink® with a suitable alloy.

3. Remove the NeoLink® from the waxed coping/framework and cast the anatomical coping/framework (in a desired alloy) without the NeoLink®. After proper finishing of the cast coping/framework bond to the NeoLink/s® or laser weld (cobalt chrome).
 Note: The margin on the titanium abutments is too thin to be used in conjunction with welding a cast coping/framework to the NeoLink®.

Three types of restorations can be produced: a restoration cemented on to custom abutments, a framework retained directly on the head of the implant by abutment screws, or an angulated screw retained solution using Access abutment.

Because the cast abutment or framework can be bonded to the precision machined NeoLink® a true passive fit can be achieved. Inaccuracies caused in casting or porcelain firing can therefore be eliminated. Generally connection by cementation or bonding is carried out in the laboratory after the application of the restorative material. All metals, alloys and ceramics can be bonded to NeoLinks®, including cobalt chromium for example.

Note: It is possible to cast gold abutments or frameworks in the same manner as titanium in that it may be cast separate to the NeoLink®. Therefore the possibility exists to have a prosthesis completed in a gold alloy with conventional PFM techniques, then bonded or cemented to a titanium NeoLink® – this results in a titanium precision machined interface between the implant and the abutment.

Gold and Ti NeoLink® Mono
Gold and Ti NeoLink® Multi
3.5.1 Single Unit Construction

Individual crowns may be constructed in one of two ways. The selected option will depend on clinical preferences, angulation of the implant and aesthetic demands:

- As an integral screw retained crown/abutment attached directly to the implant (use NeoLink® Mono).
- As a two part restoration with a custom screw retained abutment and a cement or lingually screw retained crown (use NeoLink® Mono).

Note: A NeoLink® is supplied with two straight copings, with and without margin. A set of anatomical copings is available separately.

Note: Minimum abutment height from the implant interface is 4 mm.

Clinical Procedure Visit 1

1. An implant level impression is recorded and sent to the laboratory.

Laboratory Procedure

A. Ensure that the implant replica is correctly seated on to the impression coping and pour the model in the usual manner. Once set, remove the impression tray from the working model.

Tip: Soft tissue material may be applied around the impression coping before the model is poured. Another option is to construct the soft tissue model on the master model by injecting soft tissue material into a prepared ‘putty’ key which has been reseated onto the prepared model.

B. Attach the NeoLink® to the implant replica on the working model with a laboratory screw so the indexing feature is oriented buccally.

C. Assessing the location, proximity of adjacent teeth and occlusion, select the most appropriate preformed anatomical coping. If the Esthetiline Solution is applied, then the best result is achieved by choosing the same type of coping matching the used Tissue Former. The coping is mounted on the NeoLink®, rotated in to the preferred position, and then pushed firmly onto the NeoLink® until it is properly seated (no gap).

Note: There is an indexing between the coping and the Mono NeoLinks® (the plane on the NeoLink® matches a plane in the coping) in order to achieve a specific orientation in relation to the implant’s rotational position. However, the copings can still be rotated freely for maximum flexibility by applying additional force.
D. The plastic coping can be modified to provide the optimal emergence profile, contour and occlusal form. This is carried out by selective grinding with a bur (tungsten carbide or diamond), or by addition using an appropriate dental wax or self polymerizing pattern resin.

- Wax design for a separate screw retained abutment with a cement or lingual screw retained crown.

- Wax design for screw retained crown direct to implant.

E. The waxed abutment is then scanned and milled, or invested and cast in accordance:
 - CAD/CAM – scanning and milling – described in section 3.5.3.
 - Direct investing – casting – described in section 3.5.4.
 - Indirect investing – bonding – described in section 3.5.5.

F. After milling or casting the abutment is trimmed and polished in the usual manner and final construction of the crown is completed.

G. The finished crown is returned to the dentist for insertion.

Tip: The clinical insertion of abutments can be simplified by the fabrication of a simple transfer jig from self curing acrylic or pattern resin. This is designed to fit over the abutment and span the adjacent teeth to provide correct orientation.

The NeoLink® is of very high precision – therefore margins should be finished and polished with extreme care. An implant replica should be screwed on the abutment to protect the margins.
Clinical Procedure Visit 2

1. The custom abutment is screwed into the implant using the appropriate abutment screw.

2. Once the fit has been verified it is tightened to the manufacturer’s recommended torque. For the Neoss abutment screw the recommended torque is 32 Ncm.

3. If the crown was constructed as a separate unit it is then cemented onto the abutment in the desired manner.

 Note:When cementing or lingually screw retaining a crown onto an abutment the screw access hole should be blocked out with an appropriate material (e.g. gutta-percha) prior to cementation of the crown. When screw retaining a crown direct to the implant the screw access hole should be filled with a small amount of removable material then overfilled with a permanent material (e.g. composite resin).

4. The occlusion and retention are checked and verified.

3.5.2 Multiple Unit Construction

Multiple Unit implant supported bridges may be constructed in one of three ways. The selected option will depend on clinical preferences, angulation of the implant/s and aesthetic demands:

• As an integral screw retained one piece bridge attached directly to the implants (use NeoLink® Multi).

• As a cement retained or lingually screw retained bridge over ‘individual’ custom abutments which have been screwed direct to the implants (use NeoLink® Mono).

• As a screw retained bridge attached to implants via angulated or straight Access abutments, described in section 3.9.

Note: A NeoLink® is supplied with two straight copings, with and without margin. A set of anatomical copings is available separately.

Note: Minimum abutment height from the implant interface is 4 mm.

Clinical Procedure Visit 1

1. An implant level impression is recorded and sent to the laboratory.

Laboratory Procedure

A multiple unit prosthesis may be constructed in 2 ways:

Either:

1. Screw Retained direct to the implant:
 The bridge or framework is constructed as one piece in either gold or titanium and screwed direct to the implant.
 NeoLink® Multi is used.

Or:

2. Cemented or Lingual Screw Retained to Abutment or Framework:
 The construction can be for a cemented or lingually screw retained prosthesis onto screw retained abutment/s or framework.
 NeoLink® Mono is used.

IMPORTANT NOTE: The NeoLink® Multi is used when either the bridge or bridge framework will be connected direct to the implants. This abutment will allow for a divergence or convergence of up to 40° between implants for Neoss System.
A. Ensure the implant replicas are correctly seated on to the impression copings and pour the model in the usual manner. Once set remove the impression tray from the working model.

Tip: Soft tissue material may be applied around the impression coping before the model is poured. Another option is to construct the soft tissue model on the master model by injecting soft tissue material into a prepared ‘putty’ key which has been reseated onto the prepared model.

B. Attach the NeoLinks® to the implant replicas on the working model with laboratory screws.

C. Assessing the location, proximity of adjacent teeth and occlusion, select the most appropriate preformed anatomical coping. If the Esthetiline Solution is applied, then the best result is achieved by choosing the same type of coping matching the used Tissue Former. The coping is mounted on the NeoLink®, rotated in to the preferred position, and then pushed firmly onto the NeoLink® until it is properly seated (no gap).

Note: There is an indexing between the coping and the Mono NeoLinks® (the plane on the NeoLink® matches a plane in the coping) in order to achieve a specific orientation in relation to the implant’s rotational position. However, the copings can still be rotated freely for maximum flexibility by applying additional force.

D. The plastic copings can be modified to provide the optimal emergence profile, contour and occlusal form. This is accomplished by selective grinding with a bur (tungsten carbide or diamond) or by addition using an appropriate dental wax or self polymerizing pattern resin.

• Wax design for screw retained bridge direct to implant.

• Wax design for a separate screw retained abutment with a cement or lingual screw retained bridge.

E. The waxed abutment is then scanned and milled or waxed and cast following either:

• CAD/CAM – scanning – described in section 3.5.3.

• Direct investing – casting – described in section 3.5.4.

• Indirect investing – bonding – described in section 3.5.5.
F. After milling or casting the framework is trimmed and polished in the usual manner and final construction of the bridge is completed.

Note: If the design of the prosthesis is for a multiple unit framework then it may be returned to the dentist prior to completion for a ‘metal try-in’ – if desired.

Tip: The clinical insertion of abutments can be simplified by the fabrication of a simple transfer jig made from self curing acrylic or pattern resin. The jig should be designed to fit over the abutments and/or span the adjacent teeth to provide correct positioning. A jig is not required when the abutments are cast into a multiple unit framework.

The NeoLink® is of very high precision – therefore margins should be finished and polished with extreme care. An implant analog should be screwed on the abutment to protect the margins.

Clinical Procedure Visit 2

1. The abutments or framework are screwed into the patient’s mouth using the abutment screws.

2. Once the fit has been verified it is tightened to the manufacturer’s recommended torque. For the Neoss abutment screw the recommended torque is 32 Ncm.

3. If the bridge is constructed as a separate unit it is then cemented or lingually screwed onto the abutments/framework in the desired manner.

Note: When cementing or lingually screw retaining a bridge onto abutments the screw access holes should be blocked out with an appropriate material (e.g. gutta-percha) prior to cementation of the bridge. When screw retaining a bridge direct to the implants the screw access holes should be filled with a small amount of removable material then overfilled with a permanent material (e.g. composite resin).

4. The occlusion and retention are checked and verified.

3.5.3 Double Scan – Milled Constructions

As part of Neoss Individual Prosthetics, Neoss offers milled abutments, frameworks including bars in different materials on selected markets, for further information contact your local Neoss representative.

Laboratory Procedure – Double Scan

For CAD/CAM systems providing double scan features we recommend the following procedure to ensure that the screw access hole is correctly read and scanned by the scanner, and to ensure that it is pre-prepared into the abutment/frameworks:

1. After final waxing/preparation of the abutment/framework on the model, insert an extension from the NeoLink® to the outer surface of the screw access hole in the pre-formed plastic coping. Round plastic tube/rod of 2.5 mm diameter may be used (alternatively use the impression coping screw).

2. This extension tube is trimmed ‘level to’ (or minimally above) the screw access hole in the preformed plastic coping.

3. Spray with scanning powder/paint if recommended by the CAD/CAM provider.

4. Remove waxed abutment from the NeoLink® – being careful to leave the extension tube in correct position.

5. Spray exposed extension tube and NeoLink® with scanning powder/paint if recommended.

6. Scan the NeoLink® with the extension tube as the FIRST scan in the scanner.
7. Place the waxed abutment onto the NeoLink® and do the SECOND scan – following the specific CAD/CAM manufacturer’s manual for double scanning techniques. This process will create a thin shell of material (ceramic, metal) over the screw access hole, which is easily removed prior to sintering, or after sintering by careful grinding for a ceramic restoration.

8. When a milled and sintered coping has been created it is then cemented on the NeoLink® by:
 A. Sandblasting the NeoLink® with aluminium oxide of 50–100 microns – do not sandblast fitting surface of NeoLink®, use replica to protect the fitting surface.
 B. Apply a resin bonded cement to the NeoLink® according to manufacturer’s instructions.
 C. Bonding the milled coping onto the NeoLink® with a preferred cement – according to the cement manufacturer’s recommendations. An opaque cement is optimal. Please refer to the cement recommended by the CAD/CAM provider.

Clinical Procedure – Fastening a Custom Made Construction

1. The custom abutment/framework is screwed into the implant using the appropriate abutment screw.
2. Once the fit has been verified it is tightened to the manufacturer’s recommended torque. For the Neoss abutment screw the recommended torque is 32 Ncm.
3. If a crown was constructed as a separate unit it is then cemented onto the abutment in the desired manner.
 Note: When cementing or lingually screw retaining a crown onto an abutment the screw access hole should be blocked out with an appropriate material (e.g. gutta-percha) prior to cementation of the crown. When screw retaining a crown direct to the implant the screw access hole should be filled with a small amount of removable material then overfilled with a permanent material (e.g. composite resin).
4. The occlusion and retention are checked and verified.

3.5.4 Direct Investing – Casting

The prepared coping attached to the NeoLink® is removed intact from the model by first removing the laboratory screw. The NeoLink® ‘remains’ in situ.

Note: Gold NeoLinks® are fabricated from a non-oxidizing gold alloy suitable for direct casting.

The abutment/framework is then invested using an appropriate investment material and cast.

Tip: As the gold NeoLink® is made of non-oxidizing alloy, ensure the design allows for 0.2 mm of ‘new’ alloy at the interface to avoid porcelain cracks.

Hint: During investing do not use solvent based wetting agents that can damage the surface of the plastic copings. It is also recommended that wetting agents are not applied to the gold NeoLink®.

The specific manufacturer’s guidelines in relation to investing, burnout times, temperatures, melting, and casting should be adhered too. Following casting and cooling the investment is gently removed with an ultrasonic cleaner, water jet or acid pickling NOT sandblasting.
3.5.5 Indirect Investing – Framework Bonding

It is necessary to bond directly to the titanium NeoLink®, as it is not possible to cast a number of alloys and metals, including c.p. titanium. The completed custom abutment or framework is removed from the model with the NeoLinks® in situ. The NeoLinks® are carefully removed from the prepared framework. It is then invested in the appropriate investment and cast in conventional dental laboratory techniques for casting titanium or other conventional non-precious alloys.

Tip: During investing do not use solvent based wetting agents that can damage the surface of the plastic copings.

The specific manufacturer’s guidelines in relation to investing, burnout times, temperatures, melting and casting should be adhered to. When the abutment or framework has been cast the NeoLinks® are relocated in the framework and reseated on the master model. Please refer to note below for details. There are a number of cements and bonding materials suitable for this technique. The manufacturer’s recommendations should be adhered to.

Note: In order for the NeoLink® to be easily reseated into the cast abutment/framework some adjustments may be required:

Note: BONDING – to maintain maximum surface area it is recommended that careful/selective grinding be done inside the cast abutment/framework. BEFORE cementing or bonding, the NeoLink® must be blasted with 50–150 micron particles in order for the cast abutment/framework to achieve appropriate retention to the NeoLink®. IT IS IMPORTANT TO protect the margins and the seating surface of the NeoLink® by attaching an implant replica to the abutment BEFORE BLASTING.

Note: Laser welding of the Ti NeoLinks® is not recommended since the low collar height, 0.3 mm, might impair the welding result.

Tip: To reduce the possibility of the framework discoloring, do not ‘steam clean’ the framework for at least 20 mins after polishing.

The NeoLink® is of very high precision – therefore margins should be finished and polished with extreme care. An implant replica should be screwed on the abutment to protect the margins.
3.6 Titanium Prepable Abutments

Preparable abutments may be placed directly into the patient’s mouth and prepared intra-orally or adjusted by the technician on a laboratory model. Care should be taken when preparing titanium intra-orally.

The Neoss System offers Titanium Prepable Abutments in various shapes ranging from incisors to molar, angulations (straight 0° and 15°) and heights (1 mm, 1.5 mm and 3 mm) (1 mm only for Ø3.25 mm implant).

Neoss Implant Abutment Connection – NeoLoc® enables alternative emergence profiles to fulfil specific clinical needs related to emergence profiles such as limited spaces or wide constructions. See section “3.6.1 Titanium Prepable Abutment – Alternative Emergence Profiles”, for details.

If the shape/contours of the desired abutment/s are not achievable with either of the Titanium Prepable Abutments then it is recommended to custom-design and cast the abutment in the laboratory utilizing a Gold NeoLink® Mono or Titanium NeoLink® Mono, please refer to sections “3.5.1 Single Unit Construction” and “3.5.2 Multiple Unit Construction” of these guidelines, or use blanks for customized prepable abutment by the laboratory.

Note: The Prepable Abutments may be adjusted to a minimum diameter of 4.0 mm (minimum 3.5 mm on Prepable Abutments Ø3.25) and to a minimum height of 1.0 mm from the implant platform. The “chimney” portion may be shortened to a minimum height of 4.0 mm. Ensure the minimum thickness is 0.4 mm.

The blanks may be adjusted to a minimum diameter of 4.0 mm and a maximum height of 8.0 mm when maximum angulation of “chimney” portion is 20°, or maximum height of 4.0 mm when maximum angulation of “chimney” portion is 30°.

Titanium Prepable Abutments – Preparation On Laboratory Model

Clinical Procedure Visit 1
1. An implant level impression is recorded and sent to the laboratory.

Laboratory Procedure
A. Ensure that the implant replica is correctly attached to the impression coping. The working model is poured in the desired material.

Tip: Soft tissue material may be applied around the impression coping before the model is poured. Another option is to construct the soft tissue model on the master model by injecting soft tissue material into a prep prepared ‘putty’ key which has been reseated onto the prepared model.

B. Appropriate Titanium Prepable Abutment is selected and screw retained to the implant replica in the working model with the laboratory screw provided. If the Esthetiline Solution is applied, then the best result is achieved by choosing the same type of Prepable Abutment matching the used Tissue former.
C. The necessary adjustments are made to the titanium abutment using either a tungsten carbide or diamond bur.
 Tip: Ideally the margins of the abutment should be 1 to 1.5 mm sub-gingival.

D. After the desired shape has been achieved either a temporary or permanent crown/bridge is produced in the material of choice using conventional dental laboratory procedures.

E. The prosthesis is returned to the dentist for insertion.
 Tip: The clinical insertion of abutments can be simplified by the fabrication of a simple transfer jig from self curing acrylic or pattern resin. This is designed to fit over the abutment and span the adjacent teeth to provide correct orientation.

Clinical Procedure Visit 2
1. The abutment/s is screwed into the patient’s mouth using the Neoss abutment screw and screwdriver in conjunction with the manual handle.
2. Once the fit has been verified it is tightened to 32 Ncm.
3. The crown or bridge is then seated on the abutments and checked for fit, occlusion, color etc.
4. The prosthesis is permanently cemented using conventional crown and bridge techniques.
5. The occlusion and retention are checked and verified.

Titanium Prepable Abutments – Preparation Intra-orally

Clinical Procedure Visit 1
1. The healing or provisional abutment is removed and the top of the implant is exposed.
2. Appropriate Titanium Prepable Abutment is selected and screw retained to the implant/s or replica using the abutment screw provided. The use of screwdriver and manual handle is required.
 Note: For optimal placement of the abutment and minimal preparation it is recommended the implant has been indexed as described in section 1.2.
 Hint: If there are any concerns in relation to correct seating of the abutment to the implant than a radiograph should be taken.
3. Adjustments to the abutment are made with high-speed grinding using either a tungsten or diamond bur with irrigation and high volume aspiration.
 Tip: It is sometimes easier to mark the abutment where it needs adjusting whilst in the mouth, then remove and adjust.
 Note: Ideally the margins of the abutment should be 1 to 1.5 mm sub-gingival.
4. Once the ideal contour has been obtained and correct seating of the abutment to the implant has been verified the abutment screw is tightened to 32 Ncm.
5. The screw access hole is then blocked out (e.g. gutta-percha) and a conventional crown and bridge impression is taken. Gingival retraction cord may be used.
6. A temporary prosthesis is made and inserted.
7. The impression is sent to the laboratory for the construction of the prosthesis.
Laboratory Procedure
A. The impression is poured in the desired material to produce a conventional crown and bridge model.
B. The prosthesis is constructed utilizing conventional crown and bridge laboratory techniques.
C. The completed prosthesis is returned to the dentist for insertion.

Clinical Procedure Visit 2
1. The temporary prosthesis is removed and the abutment cleaned of any debris.
2. The prosthesis is inserted and checked for fit, occlusion, color etc.
3. The prosthesis is permanently cemented using conventional crown and bridge techniques.

3.6.1 Titanium Prepable Abutment – Alternative Emergence Profiles
Same clinical and laboratory procedures apply as described in section 3.6, except for the details listed below.

Wide Emergence Abutment
The Wide Emergence abutment utilizes the outer chamfer of the implant flange for seating, enabling a lower and wider emergence profile than the Molar abutment. The Wide Emergence abutment has same indication as standard Prepable abutments.

Product content and packaging
The Wide Emergence abutment is delivered sterile. It includes abutment, laboratory screw, abutment screw, specific cover screw and specific healing abutment PEEK with screw. The cover screw and the healing abutment with screw are packed so they can be opened separately from abutment and laboratory screw.

Compatibility
The Wide Emergence abutment is compatible with ProActive Tapered & ProActive Straight (lot # equal or higher than 14646) Implant diameters Ø5.0–5.5 mm and ProActive Ø6.0 implants. The Wide Emergence abutment requires a specific healing abutment and specific cover screw for healing. A wide replica (article 31166, Protection Replica – 1 pc) is required for model making and laboratory preparation.

Note: Use of Wide Emergence abutment should be planned for and parts available for surgical placement for effective treatment.

Narrow Emergence Abutments
Narrow Emergence abutments are intended to be used with the Ø3.5 & Ø4.0 mm implants when only limited mesio-distal space is available.

Product content and packaging
Narrow Emergence abutments are delivered non-sterile and include abutment, laboratory screw and abutment screw.

Note: If replacement of abutment is required, use same type of abutment or remove tissue from the seating surface if placement of standard platform abutment is required.
3.7 Zirconia Abutment

Zirconia abutments may be used for cement-retained single and multiple unit restorations and screw-retained single unit restorations and can be prepared at the chairside or by the technician on a laboratory model. Zirconia abutments are supplied in two parts; a Zirconia coping, having a range of profiles to match the Tissue Formers, and a pre-blasted Titanium NeoLink® Mono. The Zirconia coping is designed to be cemented onto the NeoLink®.

Zirconia Abutment – Chairside (preparation and cementation extra-orally)

Clinical Procedure Visit 1

1. The healing abutment is removed in order to expose the implant.

2. An appropriate Zirconia abutment is selected.

 Note: Try-in using NeoLink® and plastic copings. If the Esthetiline Solution is applied, the best result is achieved by choosing the coping matching the Tissue Former placed at surgery.

Preparation and cementation extra-orally

3. Screw retained the pre-blasted NeoLink® to a replica/handle with the Laboratory Screw provided.

 Note: Index the flat plane of the NeoLink® in a buccal direction.

 Note: Try-in the Zirconia coping, if necessary on the implant by screw retaining the pre-blasted NeoLink® to the implant with the Abutment Screw by hand tightening and mark any adjustments needed on the coping.

4. Modify the coping to achieve the optimal design as described in section "Zirconia coping modification" on page 3:29.

5. After the ideal contour has been obtained, permanently cement the zirconia coping onto the NeoLink® by using conventional techniques.

 Note: Because of the precision fit between the NeoLink® and the Zirconia coping, only a small cement gap is present (20–50 µm). Apply a small amount of cement and ensure that any excess cement is removed. Check that the screw access channel is clear. Apply a resin bonded cement according to manufacturer’s instructions to the NeoLink®.

6. Remove the Zirconia abutment (NeoLink® and Zirconia coping) from the replica/handle.

7. Attach the Zirconia abutment on the implant in the proper orientation and once correct seating of the abutment to the implant has been verified the abutment screw is tightened to 32 Ncm.

 Note: If there are any concerns in relation to correct seating of the abutment on the implant than a radiograph should be taken.

 Note: Ensure that the Zirconia abutment is clean and dry.
8. The screw access hole is then blocked out with a suitable material and a conventional crown and bridge impression is taken. Gingival retraction cord may be used.

9. A temporary prosthesis is made and attached to the Zirconia abutment.

10. The impression is sent to the laboratory for the construction of the crown which is sent to the clinician.

11. The crown (or full-ceramic restoration) must be conditioned and cemented according to the manufacturer’s instructions.

Zirconia Abutment – Preparation by Laboratory

Clinical Procedure Visit 1

1. The healing abutment is removed in order to expose the implant and an implant level impression is taken and sent to the laboratory.

 Note: For Esthetiline, the type of Tissue Former placed at surgery is communicated to lab.

Laboratory Procedure 1

A. The stone model is poured with a soft tissue mask around the replica.

B. Once the appropriate Zirconia abutment is selected, screw retain the pre-blasted NeoLink® to a replica with the Laboratory Screw provided.

 Note: Try-in using NeoLink® and plastic copings. If the Esthetiline Solution is applied, the best result is achieved by choosing the coping matching the Tissue Former used at surgery. Mark any adjustments needed.

 Note: Index the flat plane of the NeoLink® in a buccal direction.

C. Modify the coping to achieve the optimal design as described in section “Zirconia coping modification” on page 3:29.

D. After the ideal contour has been obtained, permanently cement the zirconia coping onto the NeoLink® by using conventional techniques.

 Note: Because of the precision fit between the NeoLink® and the Zirconia coping, only a small cement gap is present (20–50 µm). Apply a small amount of cement and ensure that any excess cement is removed. Check that the screw access channel is clear. Apply a resin bonded cement according to manufacturer’s instructions to the NeoLink®.

E. A permanent crown is produced in the material of choice using conventional dental laboratory procedures. The Zirconia abutment (NeoLink® and Zirconia coping) is removed from the replica/handle and returned, if applicable with the crown, to the dentist for final placement.
Clinical Procedure Visit 2

1. Attach the Zirconia abutment on the implant in the proper orientation. Once correct seating of the abutment to the implant has been verified the abutment screw is tightened to 32 Ncm.

 Note: If there are any concerns in relation to correct seating of the abutment to the implant then a radiograph should be taken.

 Note: Ensure that Zirconia abutment is clean and dry.

2. The screw access hole is then blocked out with a suitable material.

3. The crown (or full-ceramic restoration) must be conditioned and cemented/bonded according to the manufacturer’s instructions.

Zirconia coping modification

Adjust the coping outside the mouth by using burs especially manufactured for preparation of ceramics. Use water cooling to avoid micro cracks. Do not overheat the coping.

Work with a low contact pressure.

Note: The replica can be attached to a handle for better stability during preparation.

Avoid sharp preparation edges and corners to ensure a good fit between the abutment and all-ceramic crown. Keep corners rounded with a radius of 0.5 mm or more. Ensure that the minimal thickness of the ceramic material is 0.8 mm, minimum diameter 5.0 mm and minimum height of 5.0 mm from the implant platform.

The maximum thickness of the veneering material on top of the coping must not exceed a maximum of 2.0 mm in all directions. It is advised that the prosthetic margin be 0.5–1.0 mm sub gingival – this will allow for easy removal of excess cement.

Note: Make sure not to damage the titanium implant interface during modification. Any adjustment below the final crown margin should be polished, preferably using a silicon rubber wheel and diamond paste.

Note: It is recommended that adjustment of the Zirconia coping is made prior to cementation!
The Express Abutment may be used to fabricate ‘cement retained’ crowns and partial bridges on Neoss System Implants in the maxilla and mandible. The Express Abutment is a pre-manufactured component and the fabrication process of the restoration is similar to that for conventional crowns and bridges. The impression is taken on abutment level. It is not recommended to use the Express Abutment when:

- milling and/or shortening of the abutment is required.
- the abutment shoulder would be more than 1.5 mm sub-gingival.
- the ratio of crown length to implant length exceeds 1:1.25.
- on bridges with an abutment divergence of more than 8°.
- on Ø3.25 mm implants.

The Neoss System offers Express Abutments in collar heights of 0.7 mm, 1.5 mm and 2.5 mm. All kits include sterile:

- 1 Express Abutment
- 1 Express Impression Cap
- 2 Express Burnout Copings (1 engaging and 1 non-engaging)
- 1 Express Healing Cap (PEEK)
- 1 Express Replica
- 1 Neoss Abutment Screw

The engaging Burnout Coping is used for single tooth constructions and the non-engaging for multiple tooth constructions.

Selection and Insertion

The Express Abutment is selected by the clinician in relation to the mucosal thickness. The abutment shoulder should not lie deeper than 1.5 mm below the mucosa so that excess cement can be easily removed.

Depending on the specific requirements of individual cases, the Express Abutment may be placed at the time of initial surgery, at the time of second stage surgery or anytime thereafter. Factors which may influence when the Express Abutment is placed are bone quality/quantity, initial stability, occlusion and the patient’s willingness to comply with the procedures.
Clinical Procedure – Abutment Placement

1. The top of the implant is exposed. If second stage surgery has been performed then the Healing Abutment is removed.

2. The appropriate height abutment is selected and screw retained to the implant with the Abutment Screw provided. The use of the screwdriver (and Manual Handle) is required. The screw is tightened to 32 Ncm.

 Note: A follow-up x-ray is advisable to check the correct placement of the abutment.

3. Retighten the abutment screw after approximately five minutes using the same torque value of 32 Ncm.

4. At this time either an impression of the Express Abutment is taken or the Express Healing Cap is placed, see section “Impression Procedure”.

 The Express Healing Cap is simply pushed onto the Express Abutment and ‘clicks’ firmly into position.

 For longer healing times it is recommended to cement the Express Healing Cap with temporary cement.

 Note: The Express Abutment must not be modified or customized, since this will compromise the fit of the prefabricated components.

Impression Procedure

Clinical Procedure

1. If applicable remove the Express Healing Cap to expose the Express Abutment.

 Note: The Cap is easily removed by rotating it slightly before removal.

2. The Express Impression Cap (supplied) is pressed lightly onto the Express Abutment. A detectable locking feedback signals that it is in the final position.

3. The impression is now taken following a closed tray procedure. It is possible to inject around the Express Impression Cap if desired.

 Note: It is recommended to use silicone or polyether impression material in a closed tray for the impression.
4. When the impression material has set, the impression is removed from the patient’s mouth.

Note: The Express Impression Cap remains ‘in-situ’ in the impression material.

5. The Express Healing Cap is now re-inserted on the Express Abutment.

The Express Healing Cap is simply pushed onto the Express Abutment and ‘clicks’ firmly into position.

For longer healing times it is recommended to cement the Express Healing Cap with temporary cement.

Note: The Express Replica (supplied) must be positioned in the Express Impression Cap before fabricating the master cast. A detectable locking ‘click’ signals the final position.

Laboratory Procedure

After verification that the Express Replica is correctly positioned in the Express Impression Cap, the model is poured in the desired material to produce a master cast.

Tip: Soft tissue material may be applied around the Impression Coping before the model is poured. A soft tissue model can also be constructed on the master model by injecting soft tissue material into a pre-prepared ‘putty’ key which has been re-seated onto the prepared model.

Temporary Restorations

Temporary restorations may be constructed on the Express Abutment in conventional manners (grind out a prefabricated plastic tooth).
Prosthetic Restoration

After fabrication of the master cast, the final ‘cement’ retained prosthesis is constructed utilizing the Express Burnout Copings.

Note: The Express Abutment must not be modified or customized, since this will compromise the fit of the prefabricated components.

The Express Burnout Coping which engages the Express Abutment is used for single tooth construction and the non-engaging Burnout Coping is used for multiple unit construction.

Laboratory Procedure

1. The appropriate Express Burnout Coping is used to construct either a single crown or a partial bridge.

2. The wax-up is made directly onto the Express Burnout Coping and the coping or framework is completed utilizing conventional techniques in the material of choice.

Note: The elastic O-ring on the Express Replica holds the Burnout Copings in position. It is important to ensure that during the preparation the crown margin and abutment shoulder are flush together and no chamfer is created.

Note: Due to the precision fit of the Express Burnout Copings, no corrections of the crown margin are required after casting.

3. The prosthesis is returned to the dentist for insertion.

Clinical Procedure

1. The Express Healing Cap is removed from the patient.

 Note: The Cap is easily removed by rotating it slightly before removal.

2. The prosthesis is now seated onto the Neoss Express Abutments and checked for fit, occlusion, color etc.

3. The prosthesis is permanently cemented. Apply cement to the inner surface of the cervical margins before the crown is seated.

 Note: Apply a resin bonded cement according to manufacturer’s instructions.

 Note: Because of the precision fit between the Express Abutment and prosthesis only a small cement gap is available (20–50 µm).

4. Carefully remove ALL excess cement or adhesive.

A full-ceramic restoration must be conditioned and cemented/bonded according to the manufacturer’s instructions.
3.9 Access Abutment

Indications
- Multiple unit screw-retained restorations with straight or angulated screw access
- Fully or partially edentulous cases
- Retrievable restorations

Note: The use of angulated Access Abutments for a bridge restoration on two small diameter implants is not recommended for the posterior region. Access Abutments are not available for Ø3.25 mm implants.

Material
- Abutment – Titanium
- Screw – Titanium

Assortment
- Straight: 1.5, 3 and 4 mm (other heights available upon request)
- Angulated: 10° 2.6 and 4.6 mm, 20° 2.6 and 4.6 mm and 30° 2.9 and 4.9 mm

General
The Access Abutment design has wide-ranging applications for the Neoss system by enabling screw-retained straight and angulated restorations to be produced. Angulation may be as little as 10° with 4.5 mm of interocclusal clearance.

The Access Abutment provides an axial straight or angulated extension to the implant. This facilitates working to, and restoration on, abutment level rather than directly on the implant. The angulated 10°, 20° and 30° Access abutments optimize the screw access channel for implants with unfavourable angulations.

Restorations based on NeoLinks® can be incorporated into gold, ceramic or solid frameworks in titanium, ceramic or cobalt chrome.

Overdenture options are available by utilizing Access Ball and Equator abutments.

An abutment level impression is the procedure of choice to transfer the abutment location to the model.

Access Abutments are delivered sterile.

Access Abutment Placement

Clinical Procedure
1. Select appropriate Access Abutment using Neoss Angulation Gauge.
2. **Access Abutment, Angulated:** The appropriate angulated abutment is placed on the implant and oriented in the correct position (six possible positions) using the pre-mounted abutment holder. Keep the pressure on the holder to avoid rotation of the abutment when tightening the screw. The abutment screw is then tightened using the Neoss screwdriver.

Access Abutment, Straight: The appropriate straight abutment is placed on the implant and screwed into position using the pre-mounted abutment holder.

3. Final tightening of the abutment screw to 32 Ncm is carried out using the ratchet and Neoss screwdriver.

4. The disposable holder is removed from the abutment.

 *Note: The angulated abutment is preferably mounted at implant surgery or at second stage surgery for optimal tissue healing. Placement in already healed tissue might require additional soft tissue surgery for adequate seating of the angulated abutment. A radiograph can be taken to confirm accurate seating of the abutment.***

Impression Procedure and Provisionalizing

1. Position the Access Impression Coping (lasermarked) onto the abutment and tighten the coping screw. The impression procedures, open or closed tray, are described in section "3.4 Impression Techniques". The impression is sent to the dental laboratory.

2. Place an Access Healing Abutment or a Temporary restoration, see sections “1.4 Clinical Treatment” and “3.3.2 Provisional Titanium Abutments”. Please note instructions related to the implant level also correspond to Access abutment level.

Laboratory Procedure

1. Access Abutment Replicas are secured in the copings located in the impression.

2. Pour a model including a soft tissue profile if possible.

3. Produce the restoration either by casting using gold NeoLinks®, as described in section “3.5 NeoLink® – the Concept” and “3.5.2 Multiple Unit Construction”, by using a milled framework in titanium or ceramic as described in section “3.5.3 Double Scan – Milled Constructions”, or by Ball abutment or Equator abutment as described in section “3.10 Overdenture Solutions”.

 Alternatively, utilize dedicated Access Scan Body for a digital impression and proceed with a digital workflow.
Final Restoration Placement

1. Remove the Access Healing Abutment or the temporary restoration from the abutment.
2. Connect the restoration to the abutment with prosthetic screws. Start with the central screw (if applicable) and tighten the remaining screws alternating between left and right sides.
3. Tighten the prosthetic screws to 20 Ncm using the ratchet and the screwdriver.
4. Block out the screw access channel with gutta-percha. Use a suitable material such as light curing composite to fill in the screw access channel.

3.10 Overdenture Solutions

Implant supported overdentures are a relatively simple and cost-effective treatment option for many patients. In some cases it is not necessary to construct a new prosthesis as the patient’s existing denture may be utilized. Implant supported overdentures may also be used as a provisional prosthesis. There are three ways to retain implant supported overdentures:

- Ball Abutments
- Equator Abutments
- Bar Abutments

The use of ball abutments has traditionally been in the mandible utilizing two implants. Bar retained overdentures can either be rigid (multiple implants) or resilient (two implants) in design. Resilient designed overdentures are most commonly limited to the mandible and are implant retained and tissue borne. In the maxilla however bar retained overdentures are normally rigid in design and are implant retained and implant borne. Ball abutment and Equator abutment options are available on Access level as well.

3.10.1 Ball Abutments

In the mandible two implants are utilized and in the maxilla up to four implants are utilized for a ball retained overdenture.

Hint: For ball abutments to be a restorative option the implants must be parallel to within 10 degrees of each other.

When using the Access Ball abutment the instructions below related to the implant level also correspond to Access abutment level.

Procedure – Ball Abutments

Using Patient’s Existing Denture

Clinical Procedure Visit 1

1. The top of the implants are exposed by removing the healing abutments.
2. The appropriate height ball abutments are placed with the ball driver and tightened to 20 Ncm.

Tip: Ideally the collar of the ball abutment should extend approximately 1 to 1.5 mm above the soft tissue.
3. The desired Housing is selected. Place the Space Maintainer over the Ball Abutment and seat the Housing. Transfer the position of the Housing to the denture by marking the top of the Housing and placing the denture over the Housing. Prepare a recess in the denture to accommodate the protruding Housing. Try in the denture over the Housing to verify it is fully seated on the ridge without contact onto the Housing. There should be an undercut well into which self curing resin will flow and be retained.

4. The attachment is bonded to the denture using a self curing acrylic or an appropriate attachment cement in the well in the denture. Maintain the denture in a passive condition while the acrylic/resin sets as per the manufacturer’s instructions. Once cured, the denture is lifted off the ball abutments together with the embedded Housing. The region of the denture around the attachment is then refined at the chairside or in the laboratory and care is taken to ensure the Housing is not dislodged.

See section “Adjustment and Maintenance” for information about how to insert and change Retention Female in the Titanium Housing and how to activate/deactivate the Gold Housing.

Hint: The retentive elements must be placed parallel to each other. A divergence or convergence of up to 10 degrees is acceptable.

Note: For completion of the denture in the laboratory, take abutment level impression using existing denture as impression tray. Remove the denture and insert Ball Abutment Replicas in the impression. Pour the master cast, using high quality die stone.

Procedure – Ball Abutments
Constructing A New Denture

Clinical Procedure Visit 1

1. The top of the implants are exposed by removing the healing abutments.

2. A implant level impression is taken with Neoss impression copings. The impression should be a full arch impression in a custom made impression tray with either a polyvinyl or polyether impression material.

3. After the material has set the impression is removed from the patient’s mouth, the healing abutments are replaced and the provisional prosthesis is returned to the patient. Care should be taken that the provisional appliance does not interfere with the healing abutments. A soft lining material may be utilized in the provisional prosthesis to aid in retention.

 Note: Alternatively, impression can be taken on abutment level.

Laboratory Procedure

A. Ensure that the implant replicas are correctly attached to the impression copings. The working model is poured in the conventional manner in the material of choice.

B. A screw retained ‘bite block’ or ‘occlusal registration rim’ is constructed by incorporating a healing abutment or an impression coping on at least two (2) implants.
Clinical Procedure Visit 2
1. The corresponding healing abutments are removed and the patient’s inter arch/jaw relationship is recorded onto the screw retained bite block/occlusal registration rim.

 Hint: If not all of the healing abutments are removed it will be necessary to relieve the wax registration rim over the healing abutments which have not been utilized in the screw retention of this ‘bite block/occlusal registration rim’.

2. After registration the healing abutments are reseated in the patient’s mouth.

Laboratory Procedure
C. A full set up of the final prosthesis is constructed in wax.

Clinical Procedure Visit 3
1. The waxed prosthesis is evaluated in the patient’s mouth, once correct it is returned to the laboratory for processing.

Laboratory Procedure
D. The appropriate height ball abutments are placed on the working model with the ball driver.

 Tip: Ideally the collar of the ball abutment should extend approximately 1 to 1.5 mm above the soft tissue.

E. The desired Housing element is selected and guidelines for processing and achieving the desired retentive force as described previously.

F. The denture is then finished in the usual manner and then delivered to the dentist for insertion.

 Note: The retentive elements must be placed parallel to each other. A divergence or convergence of up to 10 degrees is acceptable. It is also important that all undercuts below the retentive elements on the model are blocked out prior to processing.

Clinical Procedure Visit 4
1. The ball abutments are screwed into the implants after removal of the healing abutments and tightened to 20 Ncm.
2. The denture is returned to the patient and correctly seated.
3. The occlusion and retention are checked and verified.

See section “Adjustment and Maintenance” for information about how to insert and change Retention Female in the Titanium Housing and how to activate/deactivate the Gold Housing.

Adjustment and Maintenance

Insertion and Removal (Retention Female, Titanium Housing)

Press the Retention Female over the end of the Insertion Tool and press it into the Titanium Housing.

Three retention levels are available: yellow (normal retention) white (reduced retention) and red (increased retention). To remove a Retention Female from the Titanium Housing use a hot pointed instrument.
Activating and Deactivating (Gold Housing)

For activating/squeezing the segments in the Gold Housing, press the Activating Tool carefully and step by step until the desired increased retention is attained.

For deactivating/spreading the segments in the Gold Housing, press the Deactivating Tool carefully and step by step until the desired decreased retention is attained.

3.10.2 Equator Abutments

Indications

The Equator Abutment is designed for use with full dentures or partial dentures retained by the Neoss Implants in the maxilla or mandible. The self-locating design allows a patient to easily seat their denture. Restorations with limited vertical space are possible through the 2.1 mm height of the Equator Abutment Housing (the Housing for extended divergence is 2.2 mm). In addition, a 28° divergence (with standard Housing and 50° with Housing for extended divergence) between two implants can be easily accommodated. The divergence between implants can be reduced by using Access abutments. Either a new denture or the patient’s existing denture can be utilized for the construction of an Equator Abutment retained denture. Incorporating the male retentive element into the denture can be made in two ways:

- chairside by the dentist directly into patient’s denture in the mouth.
- in the laboratory on a model.

When using the Access Equator abutment the instructions below related to the implant level also correspond to Access abutment level, except for the tightening torque.

Note: Relining of Equator Abutment retained denture is required to avoid load bearing situation.

Contraindications

Not appropriate where a totally rigid connection is required. Neoss Equator abutments are not recommended for use on a single implant and on implants with a greater divergence than 28° (50° with Housing for extended divergence).

Caution

Federal (USA) law restricts this device for sale by or on the order of a licensed dentist.

Sterilization

All components and instruments are supplied NON-STERILE. Implant abutments and metal instruments may be sterilized following standard clinical procedures, prior to use.
Procedure – New or Existing Denture

Existing Denture

Clinical Procedure

1. The top of the implants are exposed by removing the Healing Abutments.

2. To select the proper Equator Abutment measure the tissue thickness from the apical rim of the implant body to the crest of the gingiva at the highest side of the implant site. Choose the Equator Abutment that exactly equals the tissue measurement, or is the next closest higher size available.

3. It is imperative that all bone and soft tissue is removed from the superior aspect of the implant body to guarantee complete seating of the Equator Abutment. If any doubt, verify complete seating using a radiograph.

4. Hand-tighten the abutment into the implant, using the Neoss Screwdriver.

5. The abutment is then torqued to 32 Ncm using the ratchet (20 Ncm for Access level).

Alternatively a torque control device with the Neoss Screwdriver can be used.

6. Place the Protector Disk over the Equator Abutment (this will prevent acrylic resin from flowing into under-cuts around the housings).

 Note: Make sure the soft tissue is protected from the self curing material.

7. Place the metal Housing (make sure the Black Processing Cap is inserted into the Housing) onto the Equator Abutment leaving the Protector Disk beneath it.

 Note: The Housing for extended divergence (up to 50°) comes with a specific processing cap.
8. Prepare a recess in the denture to accommodate the protruding Housing. Try in the denture over the Housing to verify it is fully seated on the ridge without contact onto the Housing.

 Note: Make sure there is NO contact between the denture and the metal Housing.

9. Use a light cured composite resin or permanent self-curing acrylic to bond the Housing to the denture. Apply a small amount in the recess of the denture and around the metal Housing. Place the denture into position in the mouth and have the patient close into very light contact centric occlusion. Maintain the denture in a passive condition while the acrylic/resin sets as per the manufacturer’s instructions.

 Note: It is necessary to block out any remaining undercuts to prevent resin/acrylic from locking the denture onto the abutment.

10. After the resin/acrylic has cured remove the denture and discard the Protector Disks.
 Fill any voids around the Housings and polish.

11. Remove the Black Processing Cap by pushing the tip on the removal side of the Equator Cap Tool firmly aside the internal wall. Push the handle down and the cap will snap out promptly.

12. Place the final Cap on the end of the insertion side of the Equator Cap Tool and press it firmly into the Housing.

 Note: The attachment retention on the abutment may be reduced by placing the Pink Soft Retention Cap or the Yellow Extra Soft Retention Cap rather than the White Standard Cap.

 Note: The retention Caps are replaced after normal wear with the Equator Cap Tool as instructed previously.

13. Upon insertion, check for pressure spots and adjust occlusion.

New Denture

Clinical Procedure

1. After inserting the appropriate height Equator Abutment onto the implants in the patient’s mouth, place the Equator Impression Copings on the abutments and verify that it is correctly seated.

2. A medium or heavy body impression material is recommended. Syringe the impression material around each of the entire Equator Impression Copings. Load the impression tray or patient’s existing denture and seat in the mouth. Allow the impression material to set per the manufacturer’s instructions.
3. Remove the impression from the mouth and verify that the impression material completely adapted around each coping. The Impression Copings should remain inside the impression.

Note: The Impression Coping comes with the Yellow Extra Soft Retention Cap instead of the Black Processing Cap for optimized compromise between stability and retention.

4. Snap an Equator Replica (2 supplied in each Impression Coping pack) onto each Impression Coping in the impression.

Laboratory Procedure

A. Pour the master cast, using high quality die stone.

B. The Black Processing Cap must be securely positioned/fixed onto the replica. Proceed to processing/relining the denture.

C. Remove the Black Processing Cap by pushing the tip on the removal side of the Equator Cap Tool firmly aside the internal wall. Push the handle down and the cap will snap out promptly.

D. Place the final Cap on the end of the insertion side of the Equator Cap Tool and press it firmly into the Housing alternatively send to clinic for final retention.

Note: The attachment retention on the abutment may be reduced by placing the Pink Soft Retention Cap or the Yellow Extra Soft Retention Cap rather than the White Standard Cap.

Note: The retention Caps are replaced after normal wear with the Equator Cap Tool as instructed previously.

E. Upon insertion, check for pressure spots and adjust occlusion.

Choice of Neoss Equator Retention Caps

Patients should be able to insert and remove their Equator retained dentures simply and reliably.

To use the Equator components the divergence for the Equator Abutment must not exceed 14° (or 28° in the case of two abutments) alternatively 25° (or 50° in the case of two abutments) if the Housing for extended divergence is utilized.

Multiple Equator Abutments

If several (3 or more) Equator Abutments are used in the same jaw, we recommend using either:

- the Pink Soft Retention Cap with retention of 1.2 kg.
- Or:
 - the Yellow Extra Soft Retention Cap with retention of 0.6 kg.
Converging or diverging Equator Abutments

In the cases where implant divergences exceed 28° (in the case of two abutments), we recommend to use Access abutments to reduce the divergence or the Housing for extended divergence (50° in the case of two abutments).

Patient care

Good oral hygiene is vital to implant success. The Equator Abutment must be thoroughly cleaned daily. The use of a soft nylon bristle or end-tufted toothbrush, and super floss to polish the abutments should be taught.

A non-abrasive gel toothpaste, and an irrigation system is recommended to keep the socket of the Equator Abutment clean.

Patients should maintain a three to four month recall for cleaning and implant evaluation.

The sulcus area around the implant abutment is the primary area of concern.

Use plastic instruments for scaling the abutments. Do not use metal instruments which may create scratches on the abutment surface. Examine patients for signs of inflammation around the implant abutments, and for implant mobility.

Use the Neoss Screwdriver to make sure the Equator Abutment is tightened before the patient leaves the praxis.

3.10.3 Bar Abutments

A bar retained overdenture may be constructed utilizing either:

- Bar Abutment – Gold
- Bar Abutment – Titanium

Procedure – Bar Abutment – Gold

Using Patient’s Existing Denture

Clinical Procedure Visit 1

1. An implant level impression is recorded and sent to the laboratory.

Laboratory Procedure

A. After correctly attaching the implant replicas the model is constructed.

B. A Bar Abutment – Gold is attached to each implant with the laboratory screw provided.

C. Either a cast or pre-formed gold bar of the preferred design and contour is soldiered to the gold bar abutments in the desired position.

D. Once the fit has been verified, return the framework and the Neoss abutment screw (provided) to the dentist for insertion.

Clinical Procedure Visit 2

1. The framework is screwed into the patient’s mouth using the Neoss abutment screw and screwdriver in conjunction with the manual handle.

2. Once the fit has been verified it is tightened to 32 Ncm.

3. The denture is relieved so as it sits over the bar without any contact.

4. The bar is ‘blocked out’ and a conventional reline impression is taken.

Laboratory Procedure

E. The model is poured in a high-quality die stone – care should be taken when removing the denture from the model so as not to damage the bar impression.
F. The desired retentive element is selected and the manufacturer’s recommended guidelines for processing and achieving the desired retentive force are followed.

G. The denture is then finished in the usual manner and the delivered to the dentist for insertion.

Clinical Procedure Visit 3

1. The denture is delivered to the patient.
2. The occlusion and retention are checked and verified.

Procedure – Bar Abutment – Gold

Constructing A New Denture

Clinical Procedure Visit 1

1. An implant level impression is recorded and sent to the laboratory.

Laboratory Procedure

A. After ensuring that the implant replicas are correctly attached to the impression coping the model is poured.

B. A screw retained ‘bite block’ or ‘occlusal registration rim’ is constructed by using healing or provisional abutments or impression coping on at least two implants.

Clinical Procedure Visit 2

1. The corresponding healing abutments are removed and the patient’s inter arch/jaw relationship is recorded onto the screw retained ‘bite block/occlusal registration rim’.

 Hint: If not all the healing abutments are removed it will be necessary to relieve the wax registration rim over the healing abutments which have not been utilized in the screw retention of this ‘bite block/occlusal registration rim’.

2. After registration the healing abutments are returned to the patient’s mouth.

Laboratory Procedure

C. A full setup of the final prosthesis is constructed in wax.

Clinical Procedure Visit 3

1. The waxed prosthesis is evaluated in the patient’s mouth, once correct it is returned to the laboratory for the bar construction.

Laboratory Procedure

D. A key covering the labial/buccal and occlusal surfaces is constructed.

E. The wax is eliminated and the teeth replaced into the key and repositioned onto the master model.

F. A Bar Abutment – Gold is attached to each implant with the laboratory screw provided.

G. Either a cast or pre-formed gold bar of the preferred design and contour is soldered or laser welded to the gold bar abutments in the desired position – ensure the framework doesn’t interfere with position of the teeth.

 Tip: It may be desired at this stage to try the framework and/or the wax set-up in the patient’s mouth. If trying in the waxed set-up the key incorporating the teeth is repositioned onto the model, the bar is blocked out and wax flowed into the key to reproduce the required shape.

H. The desired retentive element is selected and the manufacturer’s recommended guidelines for processing and achieving the desired retentive force are followed.
I. The denture is then finished in the usual manner and the delivered to the dentist for insertion – the abutment screw provided with the Bar Abutment – Gold is also returned to the dentist.

Clinical Procedure Visit 4
1. The framework is screwed into the patient’s mouth using the Neoss abutment screw and screwdriver in conjunction with the manual handle.
2. Once the fit has been verified it is tightened to 32 Ncm.
3. The denture is delivered to the patient.
4. The occlusion and retention are checked and verified.

Procedure Bar Abutment – Titanium Using Patient’s Existing Denture

Clinical Procedure Visit 1
1. An implant level impression is recorded and sent to the laboratory.

Laboratory Procedure
A. After correctly attaching the implant replicas the model is constructed.
B. A Bar Abutment – Titanium is attached to each implant with the laboratory screw provided.
C. Either a cast or pre-formed titanium bar of the preferred design and contour is laser welded to the titanium bar abutments in the desired position. Please refer to section “Laser Welding Titanium” on page 3:47 for further information.
D. Once the fit has been verified, return the framework and the Neoss abutment screw (provided) to the dentist for insertion.

Clinical Procedure Visit 2
1. The framework is screwed into the patient’s mouth using the Neoss abutment screw and screwdriver in conjunction with the manual handle.
2. Once the fit has been verified it is tightened to 32 Ncm.
3. The denture is relieved so as it sits over the bar without any contact.
4. The bar is ‘blocked out’ and a conventional reline impression is taken and sent to the laboratory for processing.

Laboratory Procedure
E. The model is poured in a high-quality die stone – care should be taken when removing the denture from the model so as not to damage the impressioned bar.
F. The desired retentive element is selected and the manufacturer’s recommended guidelines for processing and achieving the desired retentive force are followed.
G. The denture is then finished in the usual manner and the delivered to the dentist for insertion.

Clinical Procedure Visit 3
1. The denture is delivered to the patient.
2. The occlusion and retention are checked and verified.
Procedure Bar Abutment – Titanium
Constructing A New Denture

Clinical Procedure Visit 1
1. An implant level impression is recorded and sent to the laboratory.

Laboratory Procedure
A. After ensuring that the implant replicas are correctly attached to the impression coping the model is poured.
B. A screw retained ‘bite block’ or ‘occlusal registration rim’ is constructed by using healing or provisional abutments or impression coping on at least two implants.

Clinical Procedure Visit 2
1. The corresponding healing abutments are removed and the patient’s inter arch/jaw relationship is recorded onto the screw retained ‘bite block/occlusal registration rim’.
 Hint: If not all of the healing abutments are removed it will be necessary to relieve the wax registration rim over the healing abutments which have not been utilized in the screw retention of this ‘bite block/occlusal registration rim’.
2. After registration the healing abutments are returned to the patient’s mouth.

Laboratory Procedure
C. A full setup of the final prosthesis is constructed in wax.

Clinical Procedure Visit 3
1. The waxed prosthesis is evaluated in the patient’s mouth, once correct it is returned to the laboratory for the bar construction.

Laboratory Procedure
D. A key covering the labial/buccal and occlusal surfaces is constructed.
E. The wax is eliminated and the teeth replaced into the key and repositioned onto the master model.
F. A Bar Abutment – Titanium is attached to each implant with the laboratory screw provided.
G. Either a cast or pre-formed titanium bar of the preferred design and contour is laser welded to the titanium bar abutments in the desired position – ensure the framework doesn’t interfere with position of the teeth. Please refer to section "Laser Welding Titanium" on page 3:47 for further information.
 Tip: It may be desired at this stage to try the framework and/or the wax set-up in the patient’s mouth. If trying in the waxed set-up the key incorporating the teeth is repositioned onto the model, the bar is blocked out and wax flowed into the key to reproduce the required shape.
H. The desired retentive element is selected and the manufacturer’s recommended guidelines for processing and achieving the desired retentive force are followed.
I. The denture is then finished in the usual manner and the delivered to the dentist for insertion – the abutment screw provided with the Bar Abutment – Titanium is also returned to the dentist.

Clinical Procedure Visit 4
1. The framework is screwed into the patient’s mouth using the Neoss abutment screw and screwdriver in conjunction with the manual handle.
2. Once the fit has been verified it is tightened to 32 Ncm.
3. The denture is delivered to the patient.
4. The occlusion and retention are checked and verified.

Laser Welding Titanium

Ensure the Bar Abutments – Titanium are correctly seated onto the implant replicas and the titanium bar that is to be laser welded between them is correctly positioned/assembled in the desired position on the working model.

It is recommended that the titanium bar be initially tacked in place with spot welds at 30–60° spacing around its periphery on the Bar Abutment – Titanium. The fit is then checked and then a double seam of overlapping welds is produced around each Bar Abutment – Titanium. The completed framework and welds can then be polished.

TIP: Do Not ‘Steam Clean’ the framework for at least 20 mins after polishing to reduce the possibility of the framework discoloring.

The Bar Abutment – Titanium is of very high precision – therefore margins should be finished and polished with extreme care. An implant replica should be screwed on the abutment to protect the margins.

Note: Also applicable for welding of cobalt chrome abutments.

3.11 Technical Data

Titanium

All Titanium Abutments and NeoLinks® are made from Commercially Pure Titanium Grade 4 – 5 (alloy).

<table>
<thead>
<tr>
<th>Physical data</th>
<th>Typical 4</th>
<th>Typical 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range °C±15°C (°F)</td>
<td>1668 (3034)</td>
<td>1668 (3034)</td>
</tr>
<tr>
<td>Thermal Exp. Coeff. (20–200°C) K⁻¹</td>
<td>9.1 × 10⁻⁴</td>
<td>8.6 × 10⁻⁴</td>
</tr>
<tr>
<td>Beta Transus °C±15°C(°F)</td>
<td>960 (1760)</td>
<td>980 (1796)</td>
</tr>
</tbody>
</table>

Gold

All NeoLinks® for cast gold abutment or frameworks are fabricated from a non-oxidizing high-fusing gold alloy and as such porcelain cannot be bonded directly to it. When casting onto the NeoLink/s® ensure that the casting or bonding alloy is compatible. High gold content ISO 9693 (metal ceramic) NIOM Type A and ISO 22674 (dental gold casting alloy), Type 4 are suitable.

The melting range of the casting alloy must not distort or melt the NeoLink® – less than 1250°C is recommended. Casting alloys should exhibit a proof stress of Rp0.2>500N/mm² according to ISO 22674.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Au 60%, Pt 24%, Pd 15%, Ir 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>White</td>
</tr>
<tr>
<td>Melting Range</td>
<td>1400 – 1460°C (2552 – 2660°F)</td>
</tr>
<tr>
<td>Hardness</td>
<td>HV5 200±20</td>
</tr>
<tr>
<td>CTE</td>
<td>500°C 12.5 µm/m.K</td>
</tr>
<tr>
<td></td>
<td>600°C 12.6 µm/m.K</td>
</tr>
</tbody>
</table>